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Expansion of an ionized gas in a cavity within a condensed medium located in a mag- 
netic field leads to development of electromagnetic perturbations. Another source of elec- 
tromagnetic fields is shock polarization of the material in the stress wave which develops 
within the condensed medium under the action of the expanding gas cavity [i]. It is of 
interest to clarify the roles of both these mechanisms and to compare their contributions 
to the total electromagnetic signal (amplitude, spectrum, polarization, etc.). 

The present study will investigate a strongly heated plasma sphere, expanding within 
a weakly conductive condensed medium bounded by a vacuum. The effective magnetic moment 
of the plasma sphere will be calculated together with the electromagnetic field at the 
planar boundary with the vacuum. The dependence of the signal form and spectrum upon the 
plasma parameters and properties of the medium will be analyzed. The effect of the pher 
nomenon studied will be compared to the contribution of shock polarization of the condensed 
medium. 

We will consider a homogeneous plasma sphere located within a homogeneous magnetic 
field H0. At a time t > 0 let the radius of-the sphere begin to increase by a law R(t) = 
RoY (t), while the electrical conductivity of the plasma within the sphere changes by the 
law o = o(t). If the sphere is located at a large distance from the surface h >> R, then 
in calculating the field in the vicinity of the sphere we may neglect the effect of the 
free surface. We also then neglect the electrical conductivity o 0 of the condensed medium 
(~ m o0) as well. The equations for the magnetic field in the quasisteady-state approxima- 
tion (the medium is nonmagnetic, i.e., D = I) have the form 

r o t H  =0, d i v H = 0 ,  r > B ;  

aH rot [vH] 2 . ( 1 ) at = 4--h--6 AH, div H = 0, 0 < r < R,. 

where v is the velocity field within the plasma sphere. It is evident from the expressions 
presented below that as a solution of Eq. (I) for the external region r > R it is sufficient 
to take the sum of the homogeneous field H 0 and the magnetic moment field proportional to 
H0. Using an expression in reference vectors of a spherical coordinate system, we write 
this solution in the form 

H=HoL\--7~+I c o s 0 e ~ + \  r3 - -1  sinOeo , r > R  (2)  

(the angle 8 is measured from the direction of H0). The form of the function a = a(t) ap- 
pearing in the magnetic moment ~HoR03 will be determined below from the boundary conditions. 
on the sphere surface. 

Using an expression for the radius vector of a volume element of the homogeneously 
expanding plasma r =r0~(t) (where r0 is the initial coordinate of the volume element), we 
write the plasma velocity as v = r0~ = r~/T. Substituting this expression in Eq. (I) and 
transforming to the Lagrangian variables r0, t, we obtain 

c ~ ( 3 )  
aHo_7 + 2 --+-~ H = ~ Atoll, divroH = 0. 

We will omit the subscript on r0, below, understanding by r the Lagrangian variable. We 
seek a solution of Eq. (3) in the form 
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H = Hi(r, t) cos Oer - -  H2(r, t) sin Oeo. 

For H I and H 2 we find a system of equations 

(4) 

[ Jtz + 2--~-H,~= J---~-- H: 
4n~(p 2 

Hi + 2 (Hx - -  tLz)/r = 0 

q- 2H'~_.7_ 4 (It L~ H'2) ] ': 

+ - 7 -  + r ~ J '  (5) 

(the prime denotes differentiation with respect to r, and the dot, differentiation with 
respect to time). In system (5) it will be convenient to transform to new unknown functions 
f = (H l - H2)/H 0 and g = (H l + 2H2)/H0- 3, which satisfy the new system of equations 

f 4noq)2 1" -t- r r~ ; ( 6 )  

c2 f ,, 2g"~. ( 7 )  

2]' + g' + 6]/r -= O. (8) 

Since at the initial moment a homogeneous magnetic field Ho, existed everywhere, tile initial 
conditions for f and g are as follows: 

](r, O) = g(r~ O) = O, 

The normal and tangent components of II must be continuous on the sphere surface. 
Eqs. (2) and (4), we find the boundary conditions 

[(Ro, t ) =  3~/q) ~, g(Ro, t ) =  o. (10) 

We will show that the system of Eqs. (6)-(8) with boundary conditions (9), (i0) has 
a unique solution. Expanding Eq. (8) in f and considering that f is finite as r + 0, we 
obtain 

(9) 

C o m p a r i n g  

r 

i ~r~ Og(rl, t) 
] 2r a i)r------~ dr1" (11) 

0 

We will prove that if g satisfies Eq. (7), then Eq. (Ii) satisfies Eq. (6). To do this 
we apply to Eq. (ii) the operator 8/8t + 25/~ �9 Using Eq. (7), we obtain 

r 

f +  2 (~ c2 f rl 0 [ ,, 2g_(_' 1 dr1. 
0 

Integrating by parts several timesand applying Eq. (ii), we can transform this expression 
to the right side of Eq. (6). Thus, having solved Eq. (7) for g with conditions (9), (I0), 
and then substituting the solution in Eq. (ii), we obtain the unknown functions satisfying 
the problem posed. 

We write the solution of Eq. (7) in the form 

n 

g (r, t) = V,~ (t) sin ~-o" 
? t ~ l  

The functions sin(~nr/R0) satisfying Eq. (I0) form a complete orthogonal system. 
Eq. (9) we have 

OR~ (--- I_2) exp - -  dt  d t ' .  
"% (t) = nncp2 (t) Jdt  

0 t '  

(12) 

Using 

(13) 
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Substituting Eqs. (12), (13) in Eq. (ii) and integrating over r, we find 

oo 

t~ ~ "%(t)[[[aXnr~2 - ] .  ~nr 3~nr r~nr'l / (r, t) = 2zr2r3 -=1~'~ n2 [//Rtx o // 3j Sm~o + - ~ o  cOS~oo J. (14)  

Now, using boundary conditions (I0), we calculate the effective magnetic moment of the 
sphere 

3 T (t____~) ~ 1 C dq )2 nn 2c2 
- JW' P - dt tit." (15)  05 

~=1 o t' @Ro+ ] 

Thus, Eqs. (2), (12)-(15) solve the problem posed.* 

In the limit o § ~ we obtain 

- - -  l R(t) [R'z(t) ] (z 3~ (2) R (t) FR 2 (t) __ I ---~ ~ITo t 

This result corresponds to expulsion of the magnetic field under frozen conditions and com- 
plete absence of diffusion within the sphere. In the opposite limiting case o + 0 we have 
the obvious result ~ = 0. 

The low-frequency conductivity o of a Lorentz plasma in which electron collisions pre- 
dominate is given by the expression [2] 

0 ~3t2 Ze2Lml/2 , 

/ In (roT/Ze2), Ze2/tiu >> t, (16)  
L = l l .  (ro ze=/hu << t, 

where Z e is the ionic charge, L is the Coulomb logarithm, rD is the Debye screening radius, 
m is the mass of the electron, n e is the electron concentration, u is the mean relative 
velocity of electrons and protons, and the temperature T is measured in electrical units. 
If we consider the plasma an ideal gas expanding adiabatically with adiabatic index y, 
then the expression T~3(Y -l) = T O is valid (T o is the initial plasma temperature). As 
a result the expression in the exponential within the integrand of Eq. (15) can be written 
in the form 

nc~n 2 n 2 ~  1~]/~ --o-on'T3/2 
2 ~ = - - I T ]  , T d =  a~/2 Ze2Lc,nl/%p% v = ( 9  7 - 1 3 ) / 2  (17)  4ORoq)" Td 

( ~m is the maximum value of the function ~ , which determines the final radius of the gas 
sphere). If we take R 0 = 102 cm, T o = i00 eV, Z = 2, L = 4, then the constant x d, which 
determines the diffusion time, proves equal to 0.5 sec. The characteristic sphere expan- 
sion time x = 30 msec << T d. In the initial time period (i.e., t ~ x) when the electrical 
conductivity of the plasma is high, the magnetic field within the sphere is practically 
frozen. Therefore for rapid expansion of the sphere the field within decreaes and the 
plasma sphere takes on an effective magnetic moment. Thereupon (t N Td ) due to adiabatic 
cooling and retardation of the plasma motion the process of magnetic field diffusion back into 
the sphere from the external region becomes dominant, leading to relaxation of the magnetic 

moment. 

To calculate the variable magnetic moment with consideration of the boundary between 
the two media we replace the plasma sphere by a variable magnetic dipole immersed to a depth 
h in the slightly conductive medium with electrical conductivity o 0 (Fig. I). The electro- 
magnetic field components for the corresponding boundary conditions were obtained in [3] 
in Fourier representation. The presence in those expressions of a factor of the form 

*V. I. Yakovlev has noted that after the substitution H,=~H,  dT=d!(~T~) -1 and introduc- 
tion of the vector potential the original Eq. (3) can be solved with the aid of a Laplace 
transform. The quadratures obtained for ~ can be reduced to Eq. (15). 
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Fig. i 

exp(-h~ (where ~ is the frequency) which considers decay of the electromagnetic field 
in the conductivemedium shows that the low-frequency region of the spectrum is the most 
important. At the boundary with the vacuum (z = 0) in the near zone (wp/c ~ i, l$1p > i, 

= ~ )  the field components have the form [4] 

=, = I'"" 2 \-aT-0 1 s i n g s i n ~ '  A aP = e-~ h, 

E e = A \--5~-o ] (  i1'~ 111'~ (sin ~t c o s ,  + 3cosi_z~__),(pl 

8[[p = I f  - -  Ho sin (p cos ~D = / [ s i n  cp cos ~2 --  4 cos 9/(IP)i,  

5H~ = H e -[- Ho sin r sin r = A sin q0 sin xp/2, 
[ 9 cos 9 4 sin (p cos ~p.) 

8Hz = H ~ - -  Ho c ~  = A k  ~ f~p �9 

(18)  

When performing a reverse Fourier transform of Eq. (18) the integration range over frequency 
can be extended to infinity, since the .contribution of high frequencies is insignificant 

in view of the factor exp(-Sh) while the contribution of low frequencies is low, since 
a(m) + 0 as ~ + 0. We will also neglect the field of the vertical component of the magnetic 
dipole, since the corresponding terms contain the small parameter ($p)-i. Then the field 
components can be expressed in the following manner: 

Here 

8Hr = HIo,  .SHo --  28H e ctg •, (19)  

E o = " E l i ,  Er = - -2E~ ctg 4" 

( 2 ~ ) 2 p 3  , E =  H ' t ~  4 ' 

11 = V~ S V ' i a  (m) e-~h+~atdm. 

We e x t e n d  a s e c t i o n  f rom z e r o  t o  i n f i n i t y ,  w i t h  t h e  i n t e g r a t i o n  c o n t o u r  l y i n g  on a band 
which  s a t i s f i e s  t h e  c o n d i t i o n  o f  a t t e n u a t i o n  a t  i n f i n i t y  and e n c l o s e s  t h e  b r a n c h i n g  p o i n t  
w = 0 f rom be low.  We s u b s t i t u t e  a(w) in  t h e  i n t e g r a l s  I 0 ,  I 1 and change  t h e  o r d e r  o f  i n -  
t e g r a t i o n .  By a r e p l a c e m e n t  o f  v a r i a b l e  t h e  i n t e g r a l s  o v e r  f r e q u e n c y  in  Eq. (20)  can  be 
r e d u c e d  t o  t h e  i n t e r v a l  O, ~. C o n s i d e r i n g  t h e  s i g n s  o f  t h e  i n t e g r a n d s  on t h e  p h y s i c a ]  
band we arrive at the integrals 

I o = 2 ~ a (t') dt' J e--V~-'~o cos wdm, w = V 2m~o - -  m(t - -  t'), 
0 0 

(20) 

(21) 
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oo oo 

I l = ]/9-~0 j" cz ( t ' )d t '  .[ e-]/ '2-~o ~f~o (cos w + sin w)do. (21)  
0 0 

Calculating the inner integrals in Eq. (21) [5] and considering that they are nonzero for 
t '  < t ,  we o b t a i n  t h e  e x p r e s s i o n s  

I o = 2 ~f~-To Y cz (t - -  t') t '-a/" exp (-- ~o/t') dt ' ,  
0 " " 

t 

I1 = - -  ]/'~-~o ; ~ (t - -  t') t '-~l'z (t' - -  2%) exp (-- ~o/t') dt ' .  (22)  
0 

Equations (15), (19), (22) define the electromagnetic field of the plasma sphere on the 
boundary of the condensed medium with the vacuum. 

For t m T in the integral within the exponential of Eq. (15) we can substitute the 
maximum value ~ = ~m . Considering the rapid convergence of the series of Eq. (15) we will 
limit our examination to the first term. Then, integrating by parts, we obtain 

(23)  

J _f 

According to the estimate of Eq. (17), ~d >> x, so that at t ~ x the exponential in Eq. (15) 
is equal to unity to an accuracy ~T/T d. This approximation is also applicable to the rep- 
resentation of ~ in the form of Eq. (23), which is valid with the indicated limitation for 
all t. We approximate the function ~ by the expression 

=- i -[- (~m -- i)[i -- exp(--t/~)]. (24) 

Substituting Eq. (24) in Eq. (23) and neglecting factors ~T/Td in the coefficients, we have 

3 (~m - ~) [q~,,~ (%,~ + I) e- u u  2<~ ~ e-u~ + 

+ ( I  - G )  + 
(25)  

We will study the behavior of the integrals I0, 11 of Eq. (22) for various ranges of 
t. If t ~ T, then, using the linear expansion of Eq. (25), we obtain 

6H~ = 

(26) 

The character of Eq. (26) is determined by the parameter t 0. For example, at h = 300 m, 
a 0 = 10 -2 ~-i.m-i T 0 ~ 3.10 -4 sec ~ x. Analysis of the commencement of the signal (t 
T o ) shows that the increase occurs by laws ~H~ ~ t5/2exp (--r0/t), Ep N t3/2 exp (-~o/t), 

while at t >> T o the character of the time dependence of ~H~ is practically linear, Ep ~ 

/t (at t ~ T 0 the functions erfc(4~Tt) and exp(-x0/t) can be taken equal to unity). 

For the region t ~ ~ substitution of Eq. (25) in Eq. (22) leads to typical integrals 
12, 13 which can be evaluated in the following manner: 

12 
0 

(27)  
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t 

I :~= exp - -  T -  + \ t,~/2 /dt '~t=/.  ~. 
0 

(27) 

The first term on the right side of Eq. (27) considers the contribution of the region x 
t' < t, while the second in the expression for 12 defines the integration region 0 < t' 
x, which is small for I3 and has thus been omitted. Using the estimate of Eq. (27), for 
the range �9 ~ t ~ ~d we find the expressions 

(~t) ' "  " J 

.2~8/2 i2q~n,  (q)m -]- t )  + T 
(28) 

(a(t) is determined by Eq. (25)). As is evident from Eq. (28) the signal begins to fall, 
so that the substitution t ~ �9 in Eq. (28) gives a coarse estimate of the maximum value 

3 3 9 3 ~ . of the electromagnetic field components: 16g~lm "HoBor ]Eo]., lfgr 
Taking  t h e  p a r a m e t e r  v a l u e s  i n d i c a t e d  above  and s e t t i n g  H o ~ 50 A/m, Tm ~ 30,  we have  

]~S~Im ~ 5-103/03 A/m, IEplm ~ 101~ ~ ~V/m(with P in meters). 

The drop in signal at t m ~d is given by 

8 H r  ----f-'~m~q~m--~) r - - ~ - ~  + e x p ( - - t / ~ )  ,: 

(29)  

It is evident from comparison of Eqs. (28) and (29) that Ep changes polarity. The maximum 
modulus of reverse polarity Ep (at t ~ x d) is less than (Td/T)I/2 times the initial peak. 

While the characteristic width of the first peak ~~, the reverse polarity peak is signifi- 
cantly wider, since it depends on ~d" The onset of the signal is determined by rapidly 
occurring plasma sphere expansion processes. The subsequent slower fall is caused by re- 
laxation of the effective magnetic moment as a consequence of magnetic field diffusion into 
the gas cavity. 

Results of electromagnetic signal calculations are shown in Fig. 2a, b for ~ = ~/2, 
= ~/6, p = 3 km, h = 250 m, ~m = 30, with curves 1-4 corresponding to x d = 0.2, 0.2, 0.5, 

0.5 sec and �9 = 0.03, 0.02, 0.03, 0.02 sec; the dashed lines are calculations with the ap ~ 
proximate analytic expressions (28), (29). The signal form and amplitude correspond to 
those observed in experiment [6]. At the same time in the experiments the polarization 
of E and 6H in some cases corresponded to the field of a magnetic dipole, and in others, 
to the field of an effective electric dipole which develops upon shock electrical polariza- 
tion of the condensed medium. This indicates that the effect is caused by both mechanisms. 
The analysis performed in [i] and the present study show that the amplitudes of Ep and 
6Hp caused by the vertical component of the electric dipole and the horizontal component 
of the magnetic dipole lie within the same order of magnitude, i.e., are comparable. The 
components Ez, 6H z are probably related to shock polarfzation of the medium, while Er , 
~H �9 are caused by disturbance of H 0 by the plasma sphere. The orientation of the electric 
dipole related to asymmetry of the shock wave front is of a random character [i]. There- 
fore in some experiments the contribution of this mechanism is negligibly small. At the 
same time the weakness of the effect produced by the other mechanism (if the magnetic field 
is vertical) can be predicted a priori. The difference in these effects also manifests it- 
self during the time of signal falloff. For shock polarization the signal duration is de- 
termined by the time required for development of the destruction wave or the characteristic 
time for relaxation of the condensed medium polarization. The perturbations produced by 
expansion of the plasma sphere have a duration of the order of magnitude of the time re- 
quired for diffusion of the external magnetic field into the gas cavity. According to the 
estimates made above this time is the largest. 
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